Equivariant Neural Fields for Gravitational Lensing

Vishal Chandra Al for Science F24

- ¹ Gravitational Lensing
- ^{2.} Equivariant Neural Fields
- ^{3.} Downstream Classifiers
- ⁴ Preliminary Results
- ^{5.} Next Steps & Future Work

¹ Gravitational Lensing

- ^{2.} Equivariant Neural Fields
- ^{3.} Downstream Classifiers
- ⁴ Preliminary Results
- ^{5.} Next Steps & Future Work

Gravitational Lensing

- Gravity bends emitted light into our view, revealing invisible objects or making copies of objects
- Massive object is called the lens, and we consider 3 types
- Impact: measuring cosmological parameters and detecting dark matter

Expected Equivariance

- We expect SE(2) equivariance in classification between 3 kinds of gravitational lensing
- Image orientation should not matter, it is a 2D capture of an arbitrary view in a 3D space (universe)

Cheeramvelil et al.

 NIPS '23 Machine Learning in Physical Sciences Paper (<u>link</u>)

- Surveys equivariant architectures on this problem using simulated lensing data
 - Equiv. transformer, steerable CNN, harmonic net, and benchmark ResNet50

Dataset	Model name	Accuracy	AUC
Model A	ResNet50	96.86	0.99740
	C8Steerable CNN	99.02	0.99967
	Harmonic Net	90.95	0.98516
	Equivariant transformer	92.413	0.99321

- ¹ Gravitational Lensing
- ^{2.} Equivariant Neural Fields
- ^{3.} Downstream Classifiers
- ⁴ Preliminary Results
- ^{5.} Next Steps & Future Work

Neural Fields

- **Field**: spatial distribution of some quantity
- Neural Field: field defined by a NN
- Conditional Neural Field (CNF): a network which can take on different values depending on the conditioning latent

 $f_{\theta}: \mathbb{R}^d \to \mathbb{R}^c$

Neural Field

$$\mathcal{D} = \{f_i : \mathbb{R}^d \to \mathbb{R}^c\}_{i=1}^N$$
$$\forall x : f_i(x) \approx f_\theta(x; z_i)$$

Conditional Neural Field

CNF Big Picture

 Independent of Modality in a way AE/VAE is not

• Treat data as continuous functions learned by NN, then represent each by its conditioning latent

Equivariant Neural Fields

- Same paradigm as CNFs, but the conditioning latent contains geometric information that the ENF is equivariant to
- Under the hood: equivariant cross attention in latent point cloud
- **Result:** geometric reasoning from the latent space

 $\mathcal{D} = \{f_i : \mathbb{R}^d \to \mathbb{R}^c\}_{i=1}^N$ $\forall x: f_i(x) \approx f_{\theta}(x; z_i)$

condition equivariantly on geometric information

- ¹ Gravitational Lensing
- ^{2.} Equivariant Neural Fields
- ^{3.} Downstream Classifiers
- ⁴ Preliminary Results
- ^{5.} Next Steps & Future Work

Downstream Classifiers

- How to classify once we have equivariant latents
- Three options:
 - 1. MLP (ignore geometry)
 - 2. PONITA (from same group, Clebsch-Gordan free equiv. in point clouds, optimized for ENF)
 - 3. Equivariant Transformer

PONITA Architecture

- ¹ Gravitational Lensing
- ^{2.} Equivariant Neural Fields
- ^{3.} Downstream Classifiers
- ⁴ Preliminary Results
- ^{5.} Next Steps & Future Work

Preliminary Results

- Slow to train, due to three-phase learning:
 - Meta-learning Neural Fields
 - Learn field, then adjust params, and learn again (learning how to learn)
 - Learning ENF latents
 - Learning classification
- Slow training is not a major concern for many accuracy-only focused tasks

Preliminary Results cont.

- Partial results of small # epochs:
 - 1 epoch of meta-learning with batch SGD
 - 35 epochs of PONITA learning
 - loss < 0.5, acc = 0.8
 - Underfit geometric latents with partially trained classifier shows predictive power of point cloud latents
 - Higher accuracy than ordinary CNF + MLP of same training time

- ¹ Gravitational Lensing
- ^{2.} Equivariant Neural Fields
- ^{3.} Downstream Classifiers
- ⁴ Preliminary Results
- ^{5.} Next Steps & Future Work

Next Steps & Future Work

- Full training run with simulated lensing dataset
- Ablations of downstream classifiers
- In contact with **DeepLense**, who published survey presented.
 Contribute this work to the ongoing collaboration.
- Other project branch: PI-ENF

Thank you